
A n I n t e r v a l B r a n c h a n d B o u n d A l g o r i t h m f o r
B o u n d C o n s t r a i n e d O p t i m i z a t i o n P r o b l e m s

R. B A K E R K E A R F O T T
Department of Mathematics, University of Southwestern Louisiana, U.S.L. Box 4-1010, Lafayette,
LA 70504, U.S.A.

(Received: 11 November 1991; accepted: 21 November 1991)

Abstract. In this paper, we propose modifications to a prototypical branch and bound algorithm for
nonlinear optimization so that the algorithm efficiently handles constrained problems with constant
bound constraints. The modifications involve treating subregions of the boundary identically to
interior regions during the branch and bound process, but using reduced gradients for the interval
Newton method. The modifications also involve preconditioners for the interval Gauss-Seidel method
which are optimal in the sense that their application selectively gives a coordinate bound of minimum
width, a coordinate bound whose left endpoint is as large as possible, or a coordinate bound whose
right endpoint is as small as possible. We give experimental results on a selection of problems with
different properties.

AMS subject classification (1991). Primary: 65K10; Secondary: 65G10.

Key words. Nonlinear algebraic systems, Newton's method, interval arithmetic, Gauss-Seidel
method, global optimization, singularities

I. Introduction

Interval branch and bound methods have been recognized for some time as a class
of deterministic methods which will, with certainty, find the constrained global
optima of a function within a box, even when implemented on a machine with
finite precision arithmetic. In particular, it is possible with interval arithmetic to

Find, with certainty, all global minima of the nonlinear objective function

(~ (S) = (~(x1 , x 2 , Xn) ,

where bounds x i and 2i are known such that

xi<~xi<~2ifor 1<~i<~n.

The set

we will

(1)

of constant bounds in (1) may be succinctly written as the interval vector

X = ([-~1, ~11, Ix2, x23 , [-xn, ~.]r ;

denote the vector of midpoints of these intervals by

m(X) = ((x I --t-) ~ 1) / 2 , . . . , (x n -}- Xn) /2) T .

Many interval methods belong to a general class of branch and bound methods;

Journal of Global Optimization 2: 259-280, 1992.
© 1992 Kluwer Academic Publishers. Printed in the Netherlands.

260 R. BAKER KEARFOTT

one such method, not using interval arithmetic, is as described in Chapter 6 of
[17]. Such methods have the following components.

• A technique for partitioning a region X into smaller regions.
• A technique for computing a lower bound ~ of the objective function ~b over

a region X.

In such methods, a region is first partitioned, and ~b is computed for the
subregion. That subregion (from the list of all subregions which have been
produced) corresponding to the smallest ~b is then selected for further partition-
ing. The algorithms terminate when further partitioning does not result in an
increase in the underestimate. Such a branch and bound algorithm in the interval
context occurs as a method for computing the range of a function in [14, p. 49], in
[20, §3.2], etc.

In such interval branch and bound methods, lower bounds on ~b are computed
in a particularly natural and general way by evaluating ~b using interval arithmetic;
furthermore, such interval function values also lead to upper bounds on if, which
may be used to discard some of the subregions, and thus decrease the total
number of subregions which must be processed. Also, interval Newton methods
may be used both to reject interior subregions which do not contain critical
points, and to replace subregions by smaller ones via a rapidly converging
iteration scheme.

The elements of interval arithmetic underlying such methods are explained well
in [1], [14], [15], or [20].

Moore, Hansen, Sengupta and Walster, Ratschek and Rokne, and others have
spent substantial effort over a number of years in the development of interval
methods for global optimization; some of the techniques and results appear in [4],
[5], [18], [19], and [20]. Test results which indicate the competitiveness of such
algorithms appear in [21] and elsewhere. Treatises on these methods are [20] and
a forthcoming book of Hansen.

The author and his colleagues have recently developed a technique which, in
practice, results in superior behavior of the interval Newton method. The goal of
the interval Newton method is to replace the coordinate bounds x i = [xi, £i] of a
region X by coordinate bounds ~ such that the resulting region contains all of the
critical points of the original region, but such that the widths of the ~ are smaller
than the corresponding widths of the x i. The author's preconditioning technique
gives widths for ~ which are optimally small for a given interval extension1; cf.
[10] and [16]. Related preconditioners can give a minimal right endpoint or a
maximal left endpoint for ~ ; see [11] or [16]. The author has used this technique
in a scheme to reliably find all solutions to nonlinear systems of equations within a
box (ibid.)

Interval algorithms for reliably finding all roots to nonlinear systems of
equations have a somewhat similar structure to branch and bound optimization
algorithms, but differ in some important respects. Nonlinear equation solvers also

AN INTERVAL BRANCH AND BOUND ALGORITHM 261

involve a subdivision process and a search; see [7], [9], [15], and others. However,
without an objective function more boxes (containing all possible roots) must be
considered. Also, nonlinear equation solvers do not need to consider subregions
abutting the boundary of the original region specially, since only roots (i.e.
critical points), and not optima occurring on boundaries, are of interest.

This paper accomplishes two goals: (i) to indicate how the preconditioning
techniques can be included effectively within a global optimization algorithm, and
(ii) to develop and test a prototypical structure for an interval algorithm bound-
constrained global optimization. For clarity and to study the effects of various
components, we have attempted to maintain simplicity in the algorithm; produc-
tion quality algorithms would include more of the techniques in [5], [20], and in
Eldon Hansen's upcoming book.

In Section 2, we give an overview of the interval Newton method we use, while
we catalogue our preconditioners in Section 3. The modified global optimization
algorithm and the variants of the interval Newton algorithm embedded in it
appear in Section 4. Results of numerical experiments are presented in Section 5,
while conclusions appear in Section 6. Possible future work is outlined in Section
7.

Throughout, boldface will denote interval scalars, vectors, and matrices. Lower
case letters will denote scalar quantities, while vectors and matrices will be
denoted with upper case.

2. The Interval Gauss-Seidel Method

Interval Newton methods are used in general to sharpen bounds on the solutions
to systems of nonlinear equations, and in computational existence and uniqueness
tests; see [14, ch. 5], [9], [15], or [20], among others. Here, we will use them to
efficiently reduce the sizes of interior subregions containing critical points, and to
reject subregions which do not contain critical points.

Suppose we have a function F : Rn--> R n, i.e.

F(X) = (f l (x l , x 2 , X n) , . . . , fn(xl, X 2 , . . . , Xn)) r , (2)

suppose F(X) denotes an inclusion monotonic Lipschitz interval extension 2 of F
on the box X, and suppose F'(X) denotes an inclusion monotonic Lipschitz
interval extension of the Jacobi matrix of F on the box X. Then, in an interval
Newton method, we first form the linear interval system

' ~ F (X k) (3a) r (X)(Xk - -

where Xk -- (xl , x 2 x ,) r E X k represents a predictor or initial guess point.
There are various methods of formally "solving" (3a) using interval arithmetic; in
these, the mean value theorem implies that the resulting box X k will contain all
solutions to F(X) = 0 in X k. Such methods include interval Gaussian elimination,

262 R. B A K E R K E A R F O T T

the Krawczyk method, and the interval Gauss-Seidel method, see [15] for
explanations and references.

The solution method for (3a) is better if the widths of the component intervals
of X~ are smaller. From this point of view, the interval Gauss-Seidel method is
particularly good; see Theorem 4.3.5 in [15]. Furthermore, the interval Gauss-
Seidel method generally functions better if we first precondition (3a), i.e., if we
multiply by a non-interval matrix Y to obtain

rF'(2k - X D - Y F . (3b)

Here, we denote the i-th row of the preconditioner matrix Y by Y,., we set
ki = YiF(X~), and we set

Yi F' = Gi = (g l , gi,2 , gi,n)
: ([gi ,1 , gi,1], [g i ,2 , gi,2] [gi,n, gi,n])"

We then have

A L G O R I T H M 2.1. (Simplified preconditioned interval Gauss-Seidel) Do the
following for i = 1 to n.

1. (Recompute a coordinate.)
(a) Compute the preconditioner row ¥i.
(b) Compute k i and Gi.
(c) Compute

Xi =Xi-- [ki + £ gi,j(xj-xl)]/gi,i (4)
j=l
j¢i

using interval arithmetic.
2. (Update the coordinate.) I f ~ i fq x i = O, then signal that there is no root o f f in

X k. Otherwise, replace x i by ~ .

The following theorem is part of Theorem 5.18 in [15], and had previously been
observed in various contexts by various researchers.

T H E O R E M 2.2. Suppose F: X C ~"--~ ~" is Lipschitz continuous on X, and
suppose F' is a componentwise interval extension to the Jacobi matrix of F. I f
5~(X) is the result o f applying Algorithm 2.1 to X, then:

(i) Every root X* E X of F satisfies X* @ 5~(X).
(ii) I f 5~g(X) N X = ~t, then F contains no root in X.

(iii) I f X k is in the interior of X, 5~cg(X)¢ t~, and 5~(X) is contained in the
interior of X, then F contains a unique root in X.

This theorem provides a computational existence and uniqueness test which is
more practical than the Kantorovich theorem. Also, if 5c~(X) is contained in the

AN INTERVAL BRANCH AND BOUND ALGORITHM 263

interior of X, then, typically, iteration of Algorithm 2.1 (reinitializing X k to the
midpoint vector of X, and recomputing F'(X) each time through) will result in
convergence of X to an approximate point vector which represents sharp bounds
on the root. This is an efficient way of obtaining global optima which are interior
points in our branch and bound algorithm.

R E M A R K 2.3. In practice, we replace xl by ~i A x~ in Step 2 of Algorithm 2.1; it
is not hard to show that (i) and (ii) of Theorem 2.2 remain valid when we do so.
Property (iii) remains valid under certain conditions; see [8] and the clarification
thereof in [16].

A preconditioner matrix Y commonly recommended in the literature is the
inverse of the matrix of midpoints of the elements of F'(X); see [15, §4.1].
However, we have developed other preconditioners which in many practical
situations have advantages. Moreover, different preconditioners in this class can
be used to advantage in handling constrained global optimization problems. We
give a brief introduction to these preconditioners in the next section.

3. Linear Programming Preconditioners

In [10], we introduced the concept of width optimal preconditioner row ~ , and
presented a technique for computing preconditioners which were either width
optimal or which had known small widths. Such computations were based on
solving a linear programming problem for the components of each preconditioner
row. Numerical results in [10] indicated that, despite the cost to obtain the Y;,
these procedures were beneficial to the overall interval Newton method. Sub-
sequent development of low-cost preprocessing ([6]), and reformulation of the
linear programming problem and its method of solution ([16]) led to interval
Newton methods which are in many cases several times faster than even that in
[101.

The width optimal preconditioner rows are part of a class of preconditioner
rows which can be computed as solutions of similar linear programming problems;
see [16] and [11]. We define these preconditioners here.

We have classified preconditioners into C-preconditioners and S-precondition-
ers. Here, we consider only C-preconditioners, both for simplicity and since these
have been the most successful in our root-finding experiments. However, S-
preconditioners may eventually play a valid r61e in determining that a global
optimum occurs on a boundary.

Throughout we will refer to preconditioner rows Yi as preconditioners, since Yi
may be computed independently (and may indeed be of a different type) for each
i.

DEFINITION 3.1. A preconditioner row Yi is called a C-preconditioner, pro-
vided 0 ~ gi,i in (4).

264 R . B A K E R K E A R F O T T

Thus, requiring a preconditioner to be a C-preconditioner assures that ~ in (4)
is a single connected interval, and extended interval arithmetic need not be used.

DEFINITION 3.2. A C-preconditioner yCw is a W-optimal (width-optimal) i M

C-preconditioner if it minimizes the width w(£ i - ~.) of the image ~i in (4) over
all C-preconditioners.

DEFINITION 3.3. A C-preconditioner yCL is an L-optimal (left-optimal) C-
preconditioner if it maximizes the left endpoint x_-~ of the image ~ in (4) over all
C-preconditioners.

DEFINITION 3.4. A C-preconditioner yCR is an R-optimal (right-optimal)
C-preconditioner if it minimizes right endpoint £~ of the image ~i in (4) over all
C-preconditioners.

A situation where a W-optimal preconditioner would be approximate is illus-
trated in Figure 1. In this figure, we expect the image ~g to lie within xi, so that
w(x i n~i) is minimum when w(~) is. A situation where an L-optimal pre-
conditioner would be appropriate is illustrated in Figure 2. There, we expect the
image ~,. to be shifted to the right of xi, so that w(x~ O ~i) is minimized when the
left endpoint of xi is minimized. The R-optimal preconditioner is similar to the
L-optimal.

As a simple example of the effects of the three different preconditioners, define
F(X) : R 5 ~ R 5 by

+ " - (n + l) f o r l - < i < ~ n - 1 Xi ~j=l X]
f i (X) = [Hin__l x i - 1 for i = n

/ w w(x n

xi n
Xi

F i g . 1.

Xi
Xi

I

Xi

A N I N T E R V A L B R A N C H A N D B O U N D A L G O R I T H M 265

/

z~

Fig. 2.

Xi
Xi

,g,

I
Xi

w(xi n Yti)
Xi

with initial box and initial guess point: t02, (10)
/ [0 .5 ,1 .11 | 0.8

x = 1 [0 . 8 , 1 . 2 1 l , x = 1 . 0 , X - X =
[0.9, 1.511 1.2

\ [-2 ,2] / 0.0

[-1,1] \
[-0.3, 0.3][
[-0 .2 , 0.2] /
[-0.3, 0.31]

[-2 ,2] /

and thus with function and interval Jacobi matrix

F(X) = (-1 , -1.2, -1 , -0.8, - 1) r ,

r ' (x)

1 2 1 1
x 1 1 1 2 .

1 1 1 1
[-3.96,3.96] [-7.2,7.2] [-6.6,6.61 [-5.28,5.28] [0,3.96]/

(Note: This is Brown's almost linear function.) Suppose we wish to solve for
the first coordinate in the Gauss-Seidel step. Then the L-optimal preconditioner
is

YeCL = (1, O, O,--1,0) ,

and

G, = (1, o, o, - 1 , o) , k~ = - 1 - (- 0 . 8) = - 0 . 2 .

Applying the preconditioner Gauss-Seidel as in (4) thus gives

266 R. BAKER KEARFOT~[

-0 .2 + (-1) [-0 .3 , 0.31
~1 = 1 -

1

The R-optimal preconditioner is:

YC" = (1 , - 1 , 0 , O, O),

and

= [0.9, 1.5].

and the preconditioned Gauss-Seidel thus gives

~ = 1 - 0.2 + (-1) [-0 .3 , 0.3] = [0.5, 1.1]
1

The W-optimal preconditioner is

and

yCw = (1,0, - 1 , 0 , 0) ,

and

G~ = (1 , 0 , - 1 , 0 ,0) , k~ = - 1 - (- 1) = 0 .

Applying the preconditioned Gauss-Seidel thus gives

~1 = 1 - 0 + (-1) [-0 .2 , 0.2] = [0.8, 1.2]
1

The inverse midpoint preconditioner is

Y ~ (0.8, -0.2, -0.2, -0.2, -0.101) ,

G 1 ~- ([0.6, 1.4], [-0.7273, 0.72731, [-0.6667, 0.6667], [-0.5333, 0.53331.

× [-0.2, 0.21),

for which preconditioned interval Gauss-Seidel method gives

~a ~ [-0.3542, 2.684].

In the above example, we see that computing both the right optimal and left
optimal preconditioners, then intersecting the corresponding images, gives a
result which is superior to just applying the width-optimal preconditioner. How-
ever, straightforward application of this idea results in twice the amount of
computation.

Linear programming problems whose solutions are often the W-optimal, L-
optimal, and R-optimal preconditioners appear in [11] and in [16], while efficient
solution techniques for these problems appear in [16]. A solution to one of these
LP problems is the corresponding optimal preconditioner only under certain
conditions; however, if these conditions are not met, then it can be shown that the
resulting preconditioner is still, in a certain sense, good; see [11] and [16].

G 1 = (1 , - 1 , 0 , 0 , 0) , k , = - 1 - (- 1 . 2) = 0 . 2 ,

A N I N T E R V A L B R A N C H A N D B O U N D A L G O R I T H M 267

Here, we will not be concerned with the distinction between the solution to the
linear programming problems and the corresponding W-optimal, L-optimal and
R-optimal preconditioners. We will thus denote the solutions to the linear

- C W programming problems by Yi , I 7"% , and I7" cR , and assume that they make the
width of Xi small, the left endpoint of '~i large, and the right endpoint of ~i small,
respectively, and will use these facts in the global optimization algorithm.

To illustrate, a linear programming problem for the width-optimal precon-
ditioner is

,)
minimize W (V) = ~, - Ot+(n_l)f;,j , -k Vl+(2n_l)f t,], "4- V] W(Xj,)

j=l 1=1 - - l = 1
(5)

subject to

and

>>- ~ - v ' - ' , <~] <~ n Vj (Vl+(n-1) l + (2 n - l)) (f l,j" + f t , j ') 1 -- 1 ,
l = 1

1 = V l + (n _ l) f _ _ l , i - - V l + (2 n _ l) ? ; , i ,
l = 1 l = 1

vj~>0 for 1 ~ j ~ 3 n - 1 ,

where yew = (Yl, Y2,. • • , Y,) is defined by

Yl : Ot+(n_l) -- Ol+(Zn_a) , l ~ l <~ n ,

where

j t ~ .

+ 1 i f l > ~ i .

The left-optimal and right-optimal preconditioners have identical constraints, but
a modified objective function; see [11] or [16].

4. A Variant of the Global Optimization Algorithm

We present the algorithms, which incorporate the W-optimal, L-optimal, and
R-optimal preconditioners as well as our scheme for handling the bound con-
straints, in this section. The algorithm borrows from the prototypical algorithm in
[14, p. 49].

In addition to its basic structure, our branch and bound algorithm requires

1. the subdivision scheme;
2. bookkeeping to track which of the faces of which sub-boxes lie on the

boundary of the original region; and
3. the interval Newton (interval Gauss-Seidel) method, incorporating the

- c w f , ? and I)cR in an appropriate manner. preconditioners Yi , ,

We describe these first.

268 R. BAKER KEARFOTT

D E F I N I T I O N 4.1. Our bisection scheme is a function N(X) which, for an
. . X T interval vector X = (x~ x 2) , returns the triplet (X (1), X (2), i) , where

X (1) = (X I , . . . , Xi- 1, [Xi, (X i q- X i) / 2 l , X i + l , . . . ,Xn) T

and

X ~) = (X l , . . . , x i_ l , [(x_, + ~i) /2 , ~i], x , + l , . . . , x,,) ~ .

As mentioned in [20, p. 75], an appropriate bisection scheme (i.e. one which uses
an astute choice of i) can make the branch and bound algorithm more efficient.
For the related algorithm which finds all roots of a function within X, Moore
suggests four possible N in [14, pp. 78-81]; for the same problem we have found a
maximal smear scheme to work well in the software [121 . In [4] as well as
throughout [20], it is recommended to take the maximal width coordinate, i.e.,
that i with (2 i - xi) maximal, in the optimization algorithm. In the experiments
below, we choose i to be the optimization reduced maximal smear defined by

i = arg max {max{[V~b(X)~ I [~--~-)i [}}
l ~ i ~ n ' '

X~0X
w(Xi~ x)

for some domain tolerance e x.

D E F I N I T I O N 4.2. Suppose a box X has been produced by (possibly iterative)
application of ~ , starting with the initial box X of (1). Then, to each coordinate
interval ~,j = [-xi, xj] of X is associated a lower boundary flag li and an upper
boundary flag uj such that l i = " t rue" if and only if x_-j = xj and uj = " t rue" if and
only if 2j = 2j. We speak of the boundary flag vectors L = (l~, 1 2 , . . . , ln) r and
U = (u~, u 2 , un) r. We also associate a sideflag s i to ~j, such that sj = " t rue"
if and only if

(i) l i = " t rue" or uj = " t rue" ,
(ii) xj = £j,

(iii) and Xj is a boundary coordinate produced according to the "peeling"
process of Definition 4.3 below;

we speak of the vector S = (s 1 , s 2 s ,) .

For the constrained optimization problem, we must systematically search both the
interior of the original box X, as well as its lower-dimensional faces. In fact, when
we e.g. compute an interval value for 4~ on a lower dimensional face (on which
some of the coordinates are not intervals), there is less overestimation. Such facts,
as well as a striving to make the algorithm simple, dictate that we treat the lower
dimensional faces identically to the n-dimensional boxes in the list £g of boxes
produced by the algorithm. We do this with the peeling process as follows.

D E F I N I T I O N 4.3. Let a flag vector P = (P l pn) r be initially set to
(" fa lse" , " fa lse") a" for the initial box, and let X be the current box to be

AN INTERVAL BRANCH AND BOUND ALGORITHM 269

considered in our algorithm, with current flag vector P, current side vector S, and
current boundary flag vectors L and U. Let i be the smallest coordinate such that
p~ = "false". Then the peel operator ~(X) is defined to be

X if i does not exist
~(X) = {X(O, X(,), X} otherwise,

where

and

X (l) : (X l , • . . , X i - 1 , X i , X i + l , • . . , X n) T

m

X (u) = (X 1 , X i - 1 , X i , X i + l , • . . , X n) T •

The flag p; associated with the image boxes is set to " t rue" , while the flag s~ is set
to " t rue" only for X (° and X ("). The flags I i and ui are set consistently with
Definition 4.2.

Thus, with ~ , we separate the boundary from boxes which span the entire
interior; in the latter we need search only for non-boundary critical points.

DEFINITION 4.4. If X has corresponding flag vector P = (" t r u e " , . . , , " t rue") T
and an arbitrary side vector S, then the reduced system dimension nr~ d is the
number of entries of S which are "false", while the reduced function
~b R :Rnr~---> R is formed from ~b, considering those coordinates X~ with s~ = " t rue"
to be constant parameters. We similarly define the reduced gradient Vnfb and
reduced Hessian matrix H n. We refer to the system formed from ~bn, Vn~b, and H n
as the reduced system.

The modified interval Gauss-Seidel method may now be easily described.

DEFINITION 4.5. Let X be a box with corresponding boundary flag vectors L
and U, and assume that p i = " t r u e " for t<-i<~n. Then the operator
5~cg~(X, L, U, S) is defined to be the image of X under Algorithm 2.1 in
conjunction with Remark 2.3, applied to the reduced system of Definition 4.4.
Also, in Step l(a) of Algorithm 2.1, we form the preconditioner by

1 I2/cL if I i : " t rue" and u i = "false",
J I? cr i f l i = " f a l s e " a n d u / = " t r u e " ,

Yi =]~iCw if l i = "false" and u i = "false",
~12 cw i f l i = " t r u e " a n d U i = " t r u e " .

The preconditioners in Definition 4.5 are selected to result in a rapid contraction
of the subregion to a critical point if the subregion is interior to the constraint set,
and which result in a rapid contraction away from the boundary if the formally
interior subregion is on the boundary of the constraint set. This should reduce

270 R. BAKER KEARFOTT

redundant calculations (on the boundary and in the interior), and aid in rapid
rejection of regions not containing critical points.

The list ~ of boxes and associated flags produced from ~ , IG~, and ~ is
ordered such that the first element on the list is the one most likely to contain the
global optimum. The "proper order" for this list is defined in [14, p. 49] so that a
tuplet

(X (1), ~(X(O), ~(XO)), L (1), U (t))

occurs before a tuplet

(x L

provided _~(X °)) ~ &(X(2)).
As is done in [5] and [19], we use a point Newton method to attempt to find

critical points to high accuracy, to get lower upper bounds on the minimal value
of the objective function, in order to eliminate boxes from Z which cannot
contain the global minimum. This technique, based on the fact that the classical
Newton method (or "globalized" variants such as trust region algorithms), often
converges to an approximation from starting points in regions too large for
rigorous convergence verification. However, since we are solving a constrained
problem, we must make sure that such approximate critical points do not lie
outside the original region. We also wish to apply the technique to the reduced
systems on the boundary. These considerations, combined with a desire to
maintain simplicity, have resulted in

A L G O R I T H M 4.6 (for Point Estimates).
, . . . X T O. Input the present box X = (x 1 x2, , ~) , the corresponding boundary

indicator variable S, a domain tolerance gpoint, a range tolerance epoint, and an
iteration limit Mit. (Note: It is appropriate that 8poin t be small relative to the
minimum box width in the overall branch and bound algorithm.)

1. Form a point vector X ~ R n whose i-th component is (x_i + 27i)/2.
2. Form the reduced point vector)(re ~ E R nred from those entries x i of X for

which s i = "false".
3. Compute VR~b(X~o).
4. For ~ to Mit DO;

(a) Compute HR(X~d).
(b) Compute the Newton step V= (HR(Xr~d))-IvRqb(X~d).

I f this step fails (due to singularity of HR), then return the midpoint
vector of X as X.

(c) I f II VII < ~point then proceed to'step 5.
(d) t o r ~ >t 2, if II v II ~ greater than II v II from the previous iteration, then

return the midpoint vector of X as X.
(e) Apply the Newton step: Xre d "~--X~ d - V.

AN INTERVAL BRANCH AND BOUND ALGORITHM 271

.

(f) I f any coordinate of X~e d lies outside the corresponding coordinate
bounds o f X, then return the midpoint vector of X as X.

(g) Compute VR~b(Xred).
(h) If II V~(g~od)II < %~., then proceed to step 5.
END DO.
(Return an approximate minimizer.)
(a) Reset those components x i o f X with s~ = "false" to the corresponding

components o f the computed X~¢ d .
(b) Return X and ~.

We may now present our main global optimization algorithm.

ALGORITHM 4.7 (Branch and Bound).
O. Input

(a) the initial box X,
(b) a minimum box width ex, and
(c) a gradient tolerance %.

1. (Initialization)
(a) bu~--q~(X).
(b) (Initialize boundary flags)

(i) l i ~--"true",] = 1 , n.
(ii) u i e--"true",] = 1 , . . . , n.

(iii) s i ~---"false",] = 1 , n.
(iv) Pi ~--"false",] = 1 , n.

DO WHILE (~ f3 (x I maxl_<~<_.w(x~) > ex} # 0).
2. IF ~ (X) # X, THEN

(a) Insert X <z~, X <u> and X from ~ in the proper order in 5~ via Algorithm 4.8.
(b) progress ~ " t r u e " .
(c) Jump to step 4.
END IF

3. (Interval Newton method)
(a) Compute VR¢(X).

ir 0~'vR¢(x) THEN
(i) progress ~ "true".

(ii) Proceed to step 4.
END IF

(b) Compute HR(X).
(c) Compute VRqb(X), where X is the midpoint vector o f X.
(d) X ~ % (X , L, U, S).

(Note: We do not apply this operation i f the preconditioner as in
Definition 4.5 cannot be found; thus, this operation will return at most
one box.)

272 R. BAKER KEARFOTT

(e) IF 5~q~, in step 4(d) has changed X, THEN
progress ~ "true"

ELSE
progress ~-- "false"

END IF
(f) i f X ¢ O then place X into its proper position in 5~ via Algorithm 4.8.

4. Pop the first box X whose coordinate widths all exceed e x from 5~ and place it
in X.

Exit if there are no such boxes.
5. (Possible bisection) IF progress = "false" THEN

(a) (X ('), X (2~, i) <--- ~(X).
(b) For i = 1, 2: I f 0 ~ Vn~b(X i) then place X i into its proper position in ~g.
(c) progress ~-"true".
(d) Return to step 4.
ELSE

(a) Pop the first box X whose coordinate widths all exceed G from ~ and
place it in X.

Exit if there are no such boxes.
(b) Return to step 2.
END IF

END DO

Besides inserting a box in the proper place in 5f, the following algorithm also
updates the best computed upper bound b, for the global minimizer and removes
boxes which cannot possibly contain a global minimizer from S~.

ALGORITHM 4.8 (List Insertion).
O. lnput the list £f, the best computed upper bound bu, the box X to be inserted,

and the corresponding flag vectors L, U, S, and P as in Definitions 4.2 and
4.3.

1. (Update upper bound)
(a) Apply Algorithm 4.6 to obtain an X ~ X.
(b) b, <---min{b~, ~b(X), ~(X)}.

2. (Locate the point of insertion, if insertion is appropriate)
Assume the list is of the form {X (k~ } q= 1, where ~b(X (k+ 1)) >~ ~b(X(k)), 1 ~< k ~<
q - 1, and where we pretend that __$(X (q+l)) is infinite, and where X (°) is
simply the beginning of the list.
For k = 0 to q WHILE (~b(X (k+l~) <~(X)) DO:

(Return if box cannot contain a global minimum)
I f ~(X (~)) < ~b(X) then return to Algorithm 4.7.

END DO
3. (Actual insertion process)

(a) Insert X between X (k~ and X (~+1) (so that X becomes X (k+l), etc.)

AN INTERVAL BRANCH AND BOUND ALGORITHM 273

(b) Insert ~(X), q~(X), L, U, S, and P in corresponding lists.
(c) Flag X (k+l) (i.e. X) according to whether its scaled coordinate widths are

all less than e,.
4. (Cull the list o f boxes which cannot contain global minima)

FOR j = k + 1 to q: / f ~ (X (j)) > ~(X) then delete X (j) from ~.

In practice, 5¢ is a linked list, and the operations in Algorithm 4.8 proceed
accordingly.

5. Numerical Experiments

We used Algorithm 4.7 in conjunction with the interval Gauss-Seidel procedure
as implemented in [12] as a framework for implementation. The resulting Fortran
77 program is available from the author for verification of these experiments, and
eventually should be polished to production quality.

We chose the following three types of test problems.

(i) A very simple test problem to debug the code.
(ii) Problems which have been used previously in testing global optimization

methods. Here, we attempted to select difficult problems which were also
fairly easy to program.

(iii) A simply programmable problem which was previously used to test a
bound-constrained global optimization algorithm, but which exhibits a
difficult singularity.

(iv) A problem which we designed to highlight the differences between the
preconditioners we are testing.

Where bound constraints were given previously in the literature, we used these
bound constraints.

When the method is generalized to handle more general constraints (see
Section 7 below), we will experiment with additional problems from the excellent
test set in [3].

The problems in our experiments are as follows.

1. A simple quadratic, n = 2.

4 , (x) = + -

Initial box: [-0.1, 0.1] × [0.9, 1.1].
The gradient system is linear, so the Hessian matrix is a point matrix; the
single optimum at X = (0, l) r should thus be obtainable in one application of
the preconditioned interval Gauss-Seidel algorithm.

2. Problem 1 from [21] (three-hump camel back function), n = 2.

274 R. B A K E R K E A R F O T T

4 ~ (X) 2 2 = x 1 (1 2 - 6 .3Xl) + 6x2(x 2 - x a) .

Initial box: ([-4 , 41, [-4 , 4]) /
This problem has two global optima, at X = (-4 , 2) r and X = (4, 2) r, at
which th (X)=-1444 .8 . Note the contrast with the optimum X = (0, 0) r,
~b(X) = 0 reported in [21]; the latter represents a local optimum of the
constrained problem.

3. Problem 8 from [13], n = 3. (This is similar to problem 6 from [21], except for
the factor of 10 in the first term.)

n - - 1

10 sinZ(Trxl) + ~ (x i - 1)211 + 10 sin2(Trxi+l)] + (x, - 1) 2 .
i=1

Initial box: ([-1.75, 3 . 2 5] , . . . , [-1.75, 3.25]) /
This problem has a global minimum of ~b(X) = 0 at X = (1 , . . . , 1) r, but a
large number of local minima which grows exponentially with n. Levy
originally proposed this problem to illustrate the effectiveness of his tunneling
method at avoiding the numerous local minima, while Walster, Hansen, and
Sengupta used it in [21] to show that interval methods were also effective at
that.

4. The preceeding problem with n = 4.
5. The preceeding problem with n = 5.
6. The preceeding problem with n = 6.
7. The preceeding problem with n = 7.
8. The preceeding problem with n = 8.
9. A generalization of Powell's singular function, as given in [2], n = 4.

¢ (X) = ~ [(x~ + lOx~+l) 2 + 5(x~+ 2 - Xi+3) 2 + (Xi+ 1 - - 2Xi+2) 4

+ 10(Xi - - 10Xi+3)4] ,

where J = {1, 5, 9 , . . . , n - 3}.
Initial box: ([-1 , 1] , . . . , [- 1 , 1]) r.
The global optimum is ~b(X) = 0, attained at X = (0 , . . . , 0) T; however, the
Hessian matrix is of rank 2 at this point. Note that, for n = 4k, k > 1, the
Hessian matrix has k identical diagonal blocks. Various algorithms may or
may not take advantage of this, depending on their sophistication.

10. The same as the preceeding problem, but with initial box equal to
([0.1, 1.1] , [0.1, 1.1]) r.
This problem has a unique global optimum ~b(X) E [2.77, 2.84], attained at a
unique point X = (Xl, x 2 , x 3 , x 4) T with x 1 E [0.564, 0.574] and x 2 = x 3 = x 4 =
0.1. Note that this contrasts with the computed "constrained" optimum
reported in [2], in which the same bound constraints were used.

11. A function designed to highlight the difference between the inverse midpoint

AN I N T E R V A L B R A N C H A N D B O U N D A L G O R I T H M 275

and the linear programming preconditioners; the gradient is linear in all
components except the last one, which is highly nonlinear.

4~(X) = x i + xi + sin2(1000nx,).
- = _

Initial box: ([-1 , 1] , . . . , [- 1 , l l) r ; n = 4.
The unique global minimum within the box is at X = (0 , . . . , 0) r. The
Hessian matrix for this function is constant except for the element in the n-th
row and n-th column. This Hessian matrix is a symmetric analogue to the
Hessian matrix for Brown's almost linear function (cf. the experiments in
[10]); in the latter, the Jacobi matrix is constant except for the elements in the
last row, each of which is highly nonlinear.

In the experiments, e x was taken to be 10 -3 and ev was taken to be 0 in Algorithm
4.7. In the point estimate algorithm, we took 6poin t = f f p o i n t = 10-2° and Mit = 20.

In addition to the preconditioner choice strategy embodied in Definition 4.5,
we tried three other strategies, which we enumerate here.

Strategy 1: Choose Yi as in Definition 4.5.
Strategy 2: Choose Yi = IT"cw always.
Strategy 3: Choose Yi to be the i-th row of the inverse of the midpoint matrix of

the Hessian matrix. (This has been a common choice throughout the literature.)
Strategy 4: Choose Yi the opposite of Definition 4.5:

I I?cL if 1 i = "false" and u i = "true"
j ~zcR if l i = " t rue" and u~ = "false"

Yi =) _~cw if I, = "false" and u~ = "false"
[y/Cw if I i = " t rue" and u i = " t ru e " .

We implemented the algorithms in Fortran 77, borrowing from the algorithms
and basic interval arithmetic package in [10] and [12] where possible; we tried all
four strategies on all eleven problems on an IBM 3090. For each problem, we
kept a record of

CPU
DM
NFT

N G C R

N JR
NGCN

NPHI

the central processing unit time in seconds to complete Algorithm 4.7;
the maximum number of boxes in the list 2e;
the number of interval Newton method calls (including steps 2 and 3 of
Algorithm 4.7);
the number of interval gradient component evaluations to determine the
range of the gradient;
the number of evaluations of a row of the interval Jacobi matrix;
the number of interval gradient component evaluations for the interval
Gauss-Seidel method;
the number of interval objective function evaluations;

276 R. B A K E R K E A R F O T T

NBIS the number of bisections; and
CPP the total CPU time in the point Newton method.

The indicator CPP is meant to measure whether a more sophisticated strategy
than applying the point Newton method to every box and sub-box produced
would benefit the algorithm. Also, for ease of coding, the gradient and Hessian
matrix in the point Newton method were obtained from the interval gradient and
interval Hessian routines, and thus were fairly expensive. However, in no case did
the ratio CPP/CPU exceed about 1/3.

The CPU time should be taken here as a relative measure only, as we were
using portable, software-implemented interval arithmetic which did not utilize
modern techniques such as in-lining. Performance with machine-optimized inter-
val arithmetic could be an order of magnitude faster.

The results for all eleven problems and Strategy 1 are given in Table I, while
summary statistics (representing the sum of the above measures over all eleven
problems) are given for all four strategies in Table II. Complete statistics for
problems 9, 10, and 11 are given in Table III.

In all cases, Algorithm 4.7 completed successfully.

Table I. Strategy 1

CPU DM NFT NGCR N JR NGCN NPHI NBIS CPP

I 0.0 1 3 8 2 6 7 0 0.0
2 0.0 4 10 38 10 22 22 3 0.0
3 10.9 9 61 507 174 447 108 32 4.1
4 21.6 14 82 908 312 924 146 44 7.8
5 33.8 15 90 1283 425 1570 171 56 11.9
6 53.0 20 109 1877 618 2574 208 69 17.7
7 80.2 21 138 2697 917 4165 254 81 25.1
8 104.9 33 143 3325 1080 5584 277 94 32.0
9 35.6 39 2321 21458 9234 27164 3025 497 4.1

10 0.8 5 62 418 146 521 100 27 0.2
11 34.3 16 432 5954 1712 2252 1086 419 9.5

Tot. 375.1 177 3451 38473 14630 45229 5404 1322 112.4

Table II. Summary fer all four strategies

CPU DM NFT NGCR NJR NGCN NPHI NBIS CPP

1 375.1 177 3451 38473 14630 45229 5404 1322 112.4
2 374.0 177 2675 40290 15526 47850 5638 1326 111.9
3 291.6 213 2245 32007 9392 43784 5069 1954 100.9
4 378.8 177 3735 40771 15766 48506 5699 1327 112.6

AN INTERVAL BRANCH AND BOUND ALGORITHM 277

Table III. Strategy compadson on significant problems

CPU DM NFT NGCR NJR NGCN NPHI NBIS CPP Str.

9 35.6 39 2321 21458 9234 27164 3025 497 4.1 1
38.1 39 2545 23278 10130 29788 3259 501 4.4 2
17.5 73 1175 15123 4502 22012 2457 1017 3.3 3
40.1 39 2621 23895 10434 30700 3337 503 4.5 4

10

11

0.8 5 62 418 146 521 100 27 0.2 1
0.8 5 62 415 146 518 100 27 0.2 2
0.6 5 52 382 103 397 100 36 0.2 3
0.5 5 46 279 82 262 83 26 0.2 4

34.3 16 432 5954 1712 2252 1086 419 9.5 1
33.7 16 432 5954 1712 2252 1086 419 9.4 2
35.3 18 531 7636 2100 10500 1471 525 10.5 3
34.4 16 432 5954 1712 2252 1086 419 9.5 4

The above results lead to the following conclusions.

The choice of preconditioner is not as important in global optimization
problems as in general nonlinear systems.

Overal l , the experiments seem to refute our thesis that an appropr ia te pre-
condit ioner will improve the performance of a global optimization algorithm. This
is in sharp contrast to experiments repor ted in [10] and [11], in which optimal
precondit ioners never appreciably reduced performance (f rom the point of view
of C P U time and other measures) , and in many cases increased per formance by
orders of magnitude. This is probably partially due to the symmetry in the interval

Hess ian matrix. Our opt imal preconditioners will avoid working with a row in
which there is a large amount of overest imation in the intervals (due to, e.g., a
highly nonlinear function component) . However , such overest imation in a row of
an interval Hessian matrix must also occur in the corresponding column; thus, the

overes t imat ion will be present in the sum (4) in Algori thm 2.1 regardless of
whether or not that row is included in the linear combinat ion forming G~. We do
note, however , that, in the problem we designed to highlight our precondit ioners,
our precondit ioners resulted in significantly less interval Hessian row evaluations
than the inverse midpoint preconditioner.

A second explanation for the lack of performance improvement is that the
interval Newton method itself is less important in global optimization algorithms

than in general nonlinear system solvers. In particular, use of the upper bound b u
on the global op t imum to eliminate boxes seems to be powerful, and it is
enhanced in our context by our lower-dimensional searches (with correspondingly
smaller overest imations in the interval arithmetic) on boundaries. The relative
un impor tance of the interval Newton method is suggested by the fact that the
total numbe r of bisections and the maximum list size was larger when the inverse
midpoint precondi t ioner was used. This seems to indicate that, in that case, the

278 R. BAKER KEARFOTT

boxes needed to be smaller in order for the interval Gauss-Seidel method to
further reduce the coordinate intervals. (Also, see the italicized comment below.)

Use of the point Newton method (Algorithm 4.6) to improve b u is
very worthwhile.

With a very inefficient implementation of the point Newton method, and applying
the point Newton method at every conceivable point where it could benefit, it
took no more than about 1/3 of the total CPU time. Furthermore, in preliminary
experiments in which we did not use the point Newton method (not reported
here), the algorithm could not complete Problem 9 without storing at least 4000
boxes in Gf; when using the inverse midpoint preconditioner, the algorithm also
failed on Problem 11 for the same reason. (It is interesting to note, however, that
even without the point Newton method, Strategy 1 completed successfully in about
25 CPU seconds, whereas use of the inverse midpoint preconditioner failed in
about 708 CPU seconds.)

Finally even when the algorithm without the point Newton method completed,
the final boxes in ~ were of lower quality in the sense that there were clusters of
numerous boxes about global minima, some of which were fairly far from the
actual global minimum. Finally, CPU times were much larger.

Use of reduced gradients is worthwhile.

We do not have solid statistics on this aspect. However, the bound constraints fit
very naturally (without appreciable extra overhead and without complicating the
code) into both the interval Newton method and the point Newton method for
obtaining point estimates. Furthermore, as mentioned, zero-width coordinates
lead to less overestimation in the interval values. Thus, the presence of bound
constraints makes the problem easier than the global unconstrained problem.

7. Future Improvements

It is also be possible to apply this method to several classes of more general
constraints than those in (1). For example, differentiable nonlinear constraint
functions can be handled in two ways as follows. Suppose we have an inequality
constraint of the form

h(X) <- O.

Then we may compute interval extensions h(X) of h over boxes X between steps 2
and 3 of the list insertion algorithm (Algorithm 4.8), and return without inserting
a box X if h(X) > 0.

We may also include a linear interval equation of the form

Vh(X)(X - X) = h(X) f9 (-oo, 0]

A N I N T E R V A L B R A N C H A N D B O U N D A L G O R I T H M 279

in the reduced gradient system, as suggested by Novoa ([16]). This transforms the
linear interval system into a system with more equations than unknowns, but our
linear programming preconditioner technique applies equally well to rectangular
systems. In particular, the LP problem (5) may be modified by increasing the
index bound on I, and another simple modification allows inclusion of interval
right-hand-sides. Any feasible critical points must then necessarily be contained in
the box obtained from the resulting preconditioned Gauss-Seidel sweep.

Finally, standard techniques such as use of Lagrange multipliers or the Kuhn-
Tucker conditions may be used.

Notes

1 By optimality, we mean that the width of a single coordinate in the Gauss-Seidel sweep is
minimized over all possible preconditioner rows, given the initial guess point and the interval Jacobi
matrix (or slope matrix).

2 See [14, ch. 3 and ch. 4] [15], or [20 §2.6-§2.7].

References

1. Alefeld, G6tz and Jiirgen Herzberger (1983), Introduction to Interval Computations, Academic
Press, New York.

2. Conn, Andrew R., Nicholas I. M. Gould and Philippe L. Toint (1988), Testing a Class of
Methods for Solving Minimization Problems with Simple Bounds on the Variables, Math. Comp.
50 (182), 399-430.

3. Floudas, C. A. and P. M. Pardalos (1990), A Collection of Test Problems for Constrained Global
Optimization Algorithms, Springer-Verlag, New York.

4. Hansen, E. (1980), Global Optimization Using Interval Analysis- the Multi-Dimensional Case,
Numer. Math. 34 (3), 247-270.

5. Hansen, E. (1988), An Overview of Global Optimization Using Interval Analysis, in Reliability in
Computing, Academic Press, New York, pp. 289-308.

6. Hu, C.-Y. (1990), Preconditioners for Interval Newton Methods, Ph.D. dissertation, University of
Southwestern Louisiana.

7. Keaffott, R. B. (1987), Abstract Generalized Bisection and a Cost Bound, Math. Comp. 49 (179),
187-202.

8. Kearfott, R. B. (1990), Interval Newton/Generalized Bisection When There are Singularities
near Roots, Annals of Operations Research 25, 181-196.

9. Kearfott, R. B. (1990), Interval Arithmetic Techniques in the Computational Solution of
Nonlinear Systems of Equations: Introduction, Examples, and Comparisons, in Computational
Solution of Nonlinear Systems of Equations (Lectures in Applied Mathematics, volume 26),
American Mathematical Society, Providence, RI, pp. 337-358.

10. Kearfott, R. B. (1990), Preconditioners for the Interval Gauss-Seidel Method, SlAM J. Numer.
Anal. 27 (3), 804-822.

11. Kearfott, R. B., C. Y. Hu and M. Novoa III (1991), A Review of Preconditioners for the Interval
Gauss-Seidel Method, Interval Computations 1 (1), 59-85.

12. Kearfott, R.B. and M. Novoa (1990), INTBIS, A Portable Interval Newton/Bisection Package,
ACM. Trans. Math. Software 16 (2), 152-157.

13. Levy, A. V. and S. Gomez (1984), The Tunneling Method Applied to Global Optimization, in
Numerical Optimization 1984, SIAM, Philadelphia, pp. 213-44.

14. Moore, Ramon E. (1979), Methods and Applications of Interval Analysis, SIAM, Philadelphia.

280 R. B A K E R K E A R F O T T

15. Neumaier, A. (1990), Interval Methods for Systems of Equations, Cambridge University Press,
Cambridge, England.

16. Novoa, M., Linear Programming Preconditioners for the Interval Gauss-Seidel Method and their
Implementation in Generalized Bisection, Ph.D. dissertation, University of Southwestern
Louisiana, to appear.

17. Pardalos, P. M. and J. B. Rosen (1987), Constrained Global Optimization: Algorithms and
Applications, Springer-Verlag, New York.

18. Ratschek, H. (1985), Inclusion Functions and Global Optimization, Math. Programming 33 (3),
300-317.

19. Ratschek, H. and J. G. Rokne (1987), Efficiency of a Global Optimization Algorithm, SlAM J.
Numer. Anal. 24 (5), 1191-1201.

20. Ratschek, H. and J. Rokne (1988), New Computer Methods for Global Optimization, Wiley, New
York.

21. Walster, G. W., E. R. Hansen and S. Sengupta (1985), Test Results for a Global Optimization
Algorithm, in Numerical Optimization 1984, SIAM, pp. 272-287.

