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Abstract. In this paper, we propose modifications to a prototypical branch and bound algorithm for 
nonlinear optimization so that the algorithm efficiently handles constrained problems with constant 
bound constraints. The modifications involve treating subregions of the boundary identically to 
interior regions during the branch and bound process, but using reduced gradients for the interval 
Newton method. The modifications also involve preconditioners for the interval Gauss-Seidel method 
which are optimal in the sense that their application selectively gives a coordinate bound of minimum 
width, a coordinate bound whose left endpoint is as large as possible, or a coordinate bound whose 
right endpoint is as small as possible. We give experimental results on a selection of problems with 
different properties. 
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I. Introduction 

Interval branch and bound methods have been recognized for some time as a class 
of  deterministic methods which will, with certainty, find the constrained global 
optima of a function within a box, even when implemented on a machine with 
finite precision arithmetic. In particular, it is possible with interval arithmetic to 

Find, with certainty, all global minima of the nonlinear objective function 

( ~ ( S )  = (~(x1 , x 2 . . . .  , Xn) , 

where bounds x i and 2i are known such that 

xi<~xi<~2ifor 1<~i<~n. 

The set 

we will 

(1) 

of constant bounds in (1) may be succinctly written as the interval vector 

X = ([-~1, ~11, Ix2, x23 . . . .  , [-xn, ~.]r ; 

denote the vector of midpoints of these intervals by 

m(X) = ( (x  I --t- ) ~ 1 ) / 2 , . . . ,  (x  n -}- Xn) /2  ) T . 

Many interval methods belong to a general class of branch and bound methods; 
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one such method, not using interval arithmetic, is as described in Chapter 6 of 
[17]. Such methods have the following components. 

• A technique for partitioning a region X into smaller regions. 
• A technique for computing a lower bound ~ of the objective function ~b over 

a region X. 

In such methods, a region is first partitioned, and ~b is computed for the 
subregion. That subregion (from the list of all subregions which have been 
produced) corresponding to the smallest ~b is then selected for further partition- 
ing. The algorithms terminate when further partitioning does not result in an 
increase in the underestimate. Such a branch and bound algorithm in the interval 
context occurs as a method for computing the range of a function in [14, p. 49], in 
[20, §3.2], etc. 

In such interval branch and bound methods, lower bounds on ~b are computed 
in a particularly natural and general way by evaluating ~b using interval arithmetic; 
furthermore, such interval function values also lead to upper bounds on if, which 
may be used to discard some of the subregions, and thus decrease the total 
number of subregions which must be processed. Also, interval Newton methods 
may be used both to reject interior subregions which do not contain critical 
points, and to replace subregions by smaller ones via a rapidly converging 
iteration scheme. 

The elements of interval arithmetic underlying such methods are explained well 
in [1], [14], [15], or [20]. 

Moore, Hansen, Sengupta and Walster, Ratschek and Rokne, and others have 
spent substantial effort over a number of years in the development of interval 
methods for global optimization; some of the techniques and results appear in [4], 
[5], [18], [19], and [20]. Test results which indicate the competitiveness of such 
algorithms appear in [21] and elsewhere. Treatises on these methods are [20] and 
a forthcoming book of Hansen. 

The author and his colleagues have recently developed a technique which, in 
practice, results in superior behavior of the interval Newton method. The goal of 
the interval Newton method is to replace the coordinate bounds x i = [xi, £i] of a 
region X by coordinate bounds ~ such that the resulting region contains all of the 
critical points of the original region, but such that the widths of the ~ are smaller 
than the corresponding widths of the x i. The author's preconditioning technique 
gives widths for ~ which are optimally small for a given interval extension1; cf. 
[10] and [16]. Related preconditioners can give a minimal right endpoint or a 
maximal left endpoint for ~ ;  see [11] or [16]. The author has used this technique 
in a scheme to reliably find all solutions to nonlinear systems of equations within a 
box (ibid.) 

Interval algorithms for reliably finding all roots to nonlinear systems of 
equations have a somewhat similar structure to branch and bound optimization 
algorithms, but differ in some important respects. Nonlinear equation solvers also 
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involve a subdivision process and a search; see [7], [9], [15], and others. However, 
without an objective function more boxes (containing all possible roots) must be 
considered. Also, nonlinear equation solvers do not need to consider subregions 
abutting the boundary of the original region specially, since only roots (i.e. 
critical points), and not optima occurring on boundaries, are of interest. 

This paper accomplishes two goals: (i) to indicate how the preconditioning 
techniques can be included effectively within a global optimization algorithm, and 
(ii) to develop and test a prototypical structure for an interval algorithm bound- 
constrained global optimization. For clarity and to study the effects of various 
components,  we have attempted to maintain simplicity in the algorithm; produc- 
tion quality algorithms would include more of the techniques in [5], [20], and in 
Eldon Hansen's  upcoming book. 

In Section 2, we give an overview of the interval Newton method we use, while 
we catalogue our preconditioners in Section 3. The modified global optimization 
algorithm and the variants of the interval Newton algorithm embedded in it 
appear in Section 4. Results of numerical experiments are presented in Section 5, 
while conclusions appear in Section 6. Possible future work is outlined in Section 
7. 

Throughout,  boldface will denote interval scalars, vectors, and matrices. Lower 
case letters will denote scalar quantities, while vectors and matrices will be 
denoted with upper case. 

2. The Interval Gauss-Seidel  Method 

Interval Newton methods are used in general to sharpen bounds on the solutions 
to systems of nonlinear equations, and in computational existence and uniqueness 
tests; see [14, ch. 5], [9], [15], or [20], among others. Here, we will use them to 
efficiently reduce the sizes of interior subregions containing critical points, and to 
reject subregions which do not contain critical points. 

Suppose we have a function F :  Rn--> R n, i.e. 

F(X) = ( f l ( x l ,  x 2 . . . .  , X n ) , . . .  , fn(xl,  X 2 , . . .  , Xn)) r , (2) 

suppose F(X) denotes an inclusion monotonic Lipschitz interval extension 2 of F 
on the box X, and suppose F'(X) denotes an inclusion monotonic Lipschitz 
interval extension of the Jacobi matrix of F on the box X. Then, in an interval 
Newton method, we first form the linear interval system 

' ~ F ( X k )  (3a) r (X )(Xk - - 

where Xk -- (xl ,  x 2 . . . . .  x , )  r E X k represents a predictor or initial guess point. 
There are various methods of formally "solving" (3a) using interval arithmetic; in 
these, the mean value theorem implies that the resulting box X k will contain all 
solutions to F(X) = 0 in X k. Such methods include interval Gaussian elimination, 
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the Krawczyk method, and the interval Gauss-Seidel method, see [15] for 
explanations and references. 

The solution method for (3a) is better if the widths of the component intervals 
of X~ are smaller. From this point of view, the interval Gauss-Seidel method is 
particularly good; see Theorem 4.3.5 in [15]. Furthermore, the interval Gauss- 
Seidel method generally functions better if we first precondition (3a), i.e., if we 
multiply by a non-interval matrix Y to obtain 

rF'(2k - X D  - Y F  . (3b) 

Here, we denote the i-th row of the preconditioner matrix Y by Y,., we set 
ki = YiF(X~), and we set 

Yi F' = Gi  = (g l ,  gi,2 . . . .  , gi,n) 
: ([gi ,1 , gi,1], [g i ,2 ,  gi,2] . . . . .  [gi,n, gi,n])" 

We then have 

A L G O R I T H M  2.1. (Simplified preconditioned interval Gauss-Seidel) Do the 
following for i = 1 to n. 

1. (Recompute a coordinate.) 
(a) Compute the preconditioner row ¥i. 
(b) Compute k i and Gi. 
(c) Compute 

Xi =Xi-- [ki + £ gi,j(xj-xl)]/gi,i  (4)  
j=l  
j¢i 

using interval arithmetic. 
2. (Update the coordinate.) I f  ~ i fq x i = O, then signal that there is no root o f f  in 

X k. Otherwise, replace x i by ~ .  

The following theorem is part of Theorem 5.18 in [15], and had previously been 
observed in various contexts by various researchers. 

T H E O R E M  2.2. Suppose F: X C ~"--~ ~" is Lipschitz continuous on X, and 
suppose F' is a componentwise interval extension to the Jacobi matrix of  F. I f  
5~(X)  is the result o f  applying Algorithm 2.1 to X, then: 

(i) Every root X* E X of  F satisfies X* @ 5~(X).  
(ii) I f  5~g(X) N X = ~t, then F contains no root in X. 

(iii) I f  X k is in the interior of  X, 5~cg(X)¢ t~, and 5~(X) is contained in the 
interior of  X, then F contains a unique root in X. 

This theorem provides a computational existence and uniqueness test which is 
more practical than the Kantorovich theorem. Also, if 5c~(X) is contained in the 
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interior of X, then, typically, iteration of Algorithm 2.1 (reinitializing X k to the 
midpoint vector of X, and recomputing F'(X) each time through) will result in 
convergence of X to an approximate point vector which represents sharp bounds 
on the root. This is an efficient way of obtaining global optima which are interior 
points in our branch and bound algorithm. 

R E M A R K  2.3. In practice, we replace xl by ~i A x~ in Step 2 of Algorithm 2.1; it 
is not hard to show that (i) and (ii) of Theorem 2.2 remain valid when we do so. 
Property (iii) remains valid under certain conditions; see [8] and the clarification 
thereof in [16]. 

A preconditioner matrix Y commonly recommended in the literature is the 
inverse of the matrix of midpoints of the elements of F'(X); see [15, §4.1]. 
However, we have developed other preconditioners which in many practical 
situations have advantages. Moreover, different preconditioners in this class can 
be used to advantage in handling constrained global optimization problems. We 
give a brief introduction to these preconditioners in the next section. 

3. Linear Programming Preconditioners 

In [10], we introduced the concept of width optimal preconditioner row ~ ,  and 
presented a technique for computing preconditioners which were either width 
optimal or which had known small widths. Such computations were based on 
solving a linear programming problem for the components of each preconditioner 
row. Numerical results in [10] indicated that, despite the cost to obtain the Y;, 
these procedures were beneficial to the overall interval Newton method. Sub- 
sequent development of low-cost preprocessing ([6]), and reformulation of the 
linear programming problem and its method of solution ([16]) led to interval 
Newton methods which are in many cases several times faster than even that in 
[101. 

The width optimal preconditioner rows are part of a class of preconditioner 
rows which can be computed as solutions of similar linear programming problems; 
see [16] and [11]. We define these preconditioners here. 

We have classified preconditioners into C-preconditioners and S-precondition- 
ers. Here, we consider only C-preconditioners, both for simplicity and since these 
have been the most successful in our root-finding experiments. However, S- 
preconditioners may eventually play a valid r61e in determining that a global 
optimum occurs on a boundary. 

Throughout we will refer to preconditioner rows Yi as preconditioners, since Yi 
may be computed independently (and may indeed be of a different type) for each 
i. 

DEFINITION 3.1. A preconditioner row Yi is called a C-preconditioner, pro- 
vided 0 ~ gi,i in (4). 
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Thus, requiring a preconditioner to be a C-preconditioner assures that ~ in (4) 
is a single connected interval, and extended interval arithmetic need not be used. 

DEFINITION 3.2. A C-preconditioner yCw is a W-optimal (width-optimal) i M 

C-preconditioner if it minimizes the width w(£ i - ~.) of the image ~i in (4) over 
all C-preconditioners. 

DEFINITION 3.3. A C-preconditioner yCL is an L-optimal (left-optimal) C- 
preconditioner if it maximizes the left endpoint x_-~ of the image ~ in (4) over all 
C-preconditioners. 

DEFINITION 3.4. A C-preconditioner yCR is an R-optimal (right-optimal) 
C-preconditioner if it minimizes right endpoint £~ of the image ~i in (4) over all 
C-preconditioners. 

A situation where a W-optimal preconditioner would be approximate is illus- 
trated in Figure 1. In this figure, we expect the image ~g to lie within xi, so that 
w(x i n~i )  is minimum when w(~) is. A situation where an L-optimal pre- 
conditioner would be appropriate is illustrated in Figure 2. There, we expect the 
image ~,. to be shifted to the right of xi, so that w(x~ O ~i) is minimized when the 
left endpoint of xi is minimized. The R-optimal preconditioner is similar to the 
L-optimal. 

As a simple example of the effects of the three different preconditioners, define 
F(X)  : R 5 ~ R 5 by 

+ "  - ( n + l )  f o r l - < i < ~ n - 1  Xi ~j=l X] 
f i ( X )  = [Hin__l x i - 1 for i = n 

/ w w(x  n 

xi  n 
Xi 

F i g .  1. 

Xi 
Xi 

I 

Xi 
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/ 

z~  

Fig. 2. 

Xi 
Xi 

,g, 

I 
Xi 

w(xi n Yti) 
Xi 

with initial box and initial guess point: t02, (10) 
/ [0 .5 ,1 .11 |  0.8 

x = 1 [ 0 . 8 , 1 . 2 1  l ,  x =  1 . 0 ,  X - X  = 
[0.9, 1.511 1.2 

\ [ -2 ,2 ]  / 0.0 

[-1,1] \ 
[-0.3, 0.3][ 
[ -0 .2 ,  0.2] / 
[-0.3, 0.31] 

[ -2 ,2]  / 

and thus with function and interval Jacobi matrix 

F(X) = ( -1 ,  -1.2,  -1 ,  -0.8,  - 1 )  r , 

r ' ( x )  

1 2 1 1 
x 1 1 1 2 . 

1 1 1 1 
[-3.96,3.96] [-7.2,7.2] [-6.6,6.61 [-5.28,5.28] [0,3.96]/ 

(Note: This is Brown's almost linear function.) Suppose we wish to solve for 
the first coordinate in the Gauss-Seidel step. Then the L-optimal preconditioner 
is 

YeCL = (1, O, O,--1,0) ,  

and 

G, = (1, o, o, - 1 ,  o ) ,  k~ = - 1 - ( - 0 . 8 )  = - 0 . 2 .  

Applying the preconditioner Gauss-Seidel as in (4) thus gives 
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-0 .2  + ( -1) [ -0 .3 ,  0.31 
~1 = 1 -  

1 

The R-optimal preconditioner is: 

YC" = ( 1 , - 1 , 0 ,  O, O), 

and 

= [0.9, 1.5]. 

and the preconditioned Gauss-Seidel thus gives 

~ = 1 - 0.2 + ( -1 ) [ -0 .3 ,  0.3] = [0.5, 1.1] 
1 

The W-optimal preconditioner is 

and 

yCw = (1,0, - 1 , 0 , 0 ) ,  

and 

G~ = ( 1 , 0 , - 1 ,  0 ,0 ) ,  k~ = - 1 - ( - 1 ) = 0 .  

Applying the preconditioned Gauss-Seidel thus gives 

~1 = 1 - 0 + ( -1 ) [ -0 .2 ,  0.2] = [0.8, 1.2] 
1 

The inverse midpoint preconditioner is 

Y ~  (0.8, -0.2,  -0.2,  -0.2,  -0.101) , 

G 1 ~- ([0.6, 1.4], [-0.7273, 0.72731, [-0.6667, 0.6667], [-0.5333, 0.53331. 

× [-0.2,  0.21), 

for which preconditioned interval Gauss-Seidel method gives 

~a ~ [-0.3542, 2.684]. 

In the above example, we see that computing both the right optimal and left 
optimal preconditioners, then intersecting the corresponding images, gives a 
result which is superior to just applying the width-optimal preconditioner. How- 
ever, straightforward application of this idea results in twice the amount of 
computation. 

Linear programming problems whose solutions are often the W-optimal, L- 
optimal, and R-optimal preconditioners appear in [11] and in [16], while efficient 
solution techniques for these problems appear in [16]. A solution to one of these 
LP problems is the corresponding optimal preconditioner only under certain 
conditions; however, if these conditions are not met, then it can be shown that the 
resulting preconditioner is still, in a certain sense, good; see [11] and [16]. 

G 1 = ( 1 , - 1 , 0 , 0 , 0 ) ,  k , = - 1 - ( - 1 . 2 ) = 0 . 2 ,  
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Here, we will not be concerned with the distinction between the solution to the 
linear programming problems and the corresponding W-optimal, L-optimal and 
R-optimal preconditioners. We will thus denote the solutions to the linear 

- C W  programming problems by Yi , I 7"% , and I7" cR , and assume that they make the 
width of Xi small, the left endpoint of '~i large, and the right endpoint of ~i small, 
respectively, and will use these facts in the global optimization algorithm. 

To illustrate, a linear programming problem for the width-optimal precon- 
ditioner is 

, ) 
minimize W ( V )  = ~,  - Ot+(n_l)f;,j ,  -k Vl+(2n_l)f  t,], "4- V] W(Xj,) 

j=l  1=1 - -  l = 1  
(5) 

subject to 

and 

>>- ~ - v ' - '  , <~ ] <~ n Vj (Vl+(n-1) l + ( 2 n - l ) ) ( f  l,j" + f t , j ' )  1 -- 1 ,  
l = 1  

1 = V l + ( n _ l ) f _ _ l , i  - -  V l + ( 2 n _ l ) ? ; , i  , 
l = 1  l = 1  

vj~>0 for 1 ~ j ~ 3 n - 1 ,  

where yew = (Yl, Y2,. • • , Y,) is defined by 

Yl  : Ot+(n_l) -- Ol+(Zn_a) , l ~ l <~ n , 

where 

j t ~ . 

+ 1  i f  l > ~ i .  

The left-optimal and right-optimal preconditioners have identical constraints, but 
a modified objective function; see [11] or [16]. 

4. A Variant of the Global Optimization Algorithm 

We present the algorithms, which incorporate the W-optimal, L-optimal, and 
R-optimal preconditioners as well as our scheme for handling the bound con- 
straints, in this section. The algorithm borrows from the prototypical algorithm in 
[14, p. 49]. 

In addition to its basic structure, our branch and bound algorithm requires 

1. the subdivision scheme; 
2. bookkeeping to track which of the faces of which sub-boxes lie on the 

boundary of the original region; and 
3. the interval Newton (interval Gauss-Seidel) method, incorporating the 

- c w  f , ?  and I )cR in an appropriate manner. preconditioners Yi , , 

We describe these first. 
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D E F I N I T I O N  4.1. Our bisection scheme is a function N(X) which, for an 
. .  X T interval vector X = (x~ x 2 . . . .  ) , returns the triplet (X (1), X (2), i) ,  where 

X (1) = ( X I , . . .  , Xi- 1, [Xi, (X i q- X i ) / 2 l ,  X i + l , . . .  ,Xn)  T 

and 

X ~) = ( X l , . . .  , x i_ l ,  [(x_, + ~i) /2 ,  ~i], x , + l , . . . ,  x,,) ~ . 

As mentioned in [20, p. 75], an appropriate bisection scheme (i.e. one which uses 
an astute choice of i) can make the branch and bound algorithm more efficient. 
For  the related algorithm which finds all roots of a function within X, Moore  
suggests four possible N in [14, pp. 78-81]; for the same problem we have found a 
maximal smear scheme to work well in the software [121 . In [4] as well as 
throughout  [20], it is recommended to take the maximal width coordinate,  i.e.,  
that  i with ( 2 i -  xi) maximal, in the optimization algorithm. In the experiments 
below, we choose i to be the optimization reduced maximal smear defined by 

i = arg max {max{[ V~b(X)~ I [~--~-)i [}} 
l ~ i ~ n  ' ' 

X~0X 
w(Xi~ x) 

for some domain tolerance e x. 

D E F I N I T I O N  4.2. Suppose a box X has been produced by (possibly iterative) 
application of ~ ,  starting with the initial box X of (1). Then,  to each coordinate 
interval ~,j = [-xi, xj] of X is associated a lower boundary flag li and an upper 
boundary flag uj such that l i = " t rue"  if and only if x_-j = xj and uj = " t rue"  if and 
only if 2j = 2j. We speak of the boundary flag vectors L = (l~, 1 2 , . . . ,  ln) r and 
U = (u~, u 2 . . . .  , un) r. We also associate a sideflag s i to ~j, such that sj = " t rue"  
if and only if 

(i) l i = " t rue"  or uj = " t rue" ,  
(ii) xj = £j, 

(iii) and Xj is a boundary coordinate produced according to the "peeling" 
process of Definition 4.3 below; 

we speak of the vector S = (s 1 , s 2 . . . . .  s , ) .  

For  the constrained optimization problem, we must systematically search both the 
interior of the original box X, as well as its lower-dimensional faces. In fact, when 
we e.g. compute an interval value for 4~ on a lower dimensional face (on which 
some of the coordinates are not intervals), there is less overestimation. Such facts, 
as well as a striving to make the algorithm simple, dictate that we treat the lower 
dimensional faces identically to the n-dimensional boxes in the list £g of boxes 
produced by the algorithm. We do this with the peeling process as follows. 

D E F I N I T I O N  4.3. Let  a flag vector P =  (P l  . . . . .  pn) r be initially set to 
(" fa lse" ,  . . . .  " fa lse")  a" for  the initial box, and let X be the current box to be 
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considered in our algorithm, with current flag vector P, current side vector S, and 
current boundary flag vectors L and U. Let i be the smallest coordinate such that 
p~ = "false".  Then the peel operator ~(X)  is defined to be 

X if i does not exist 
~(X)  = {X(O, X(,), X} otherwise, 

where 

and 

X ( l )  : ( X l ,  • . . , X i - 1 ,  X i , X i + l ,  • . . , X n )  T 

m 

X (u )  = ( X  1 . . . .  , X i - 1 ,  X i , X i + l ,  • . . , X n )  T • 

The flag p; associated with the image boxes is set to " t rue" ,  while the flag s~ is set 
to " t rue"  only for X (° and X ("). The flags I i and ui are set consistently with 
Definition 4.2. 

Thus, with ~ ,  we separate the boundary from boxes which span the entire 
interior; in the latter we need search only for non-boundary critical points. 

DEFINITION 4.4. If X has corresponding flag vector P = ( " t r u e " , . . , ,  " t rue")  T 
and an arbitrary side vector S, then the reduced system dimension nr~ d is the 
number of entries of S which are "false", while the reduced function 
~b R :Rnr~---> R is formed from ~b, considering those coordinates X~ with s~ = " t rue"  
to be constant parameters. We similarly define the reduced gradient Vnfb and 
reduced Hessian matrix H n. We refer to the system formed from ~bn, Vn~b, and H n 
as the reduced system. 

The modified interval Gauss-Seidel method may now be easily described. 

DEFINITION 4.5. Let X be a box with corresponding boundary flag vectors L 
and U, and assume that p i = " t r u e "  for t<-i<~n. Then the operator 
5~cg~(X, L, U, S) is defined to be the image of X under Algorithm 2.1 in 
conjunction with Remark 2.3, applied to the reduced system of Definition 4.4. 
Also, in Step l(a) of Algorithm 2.1, we form the preconditioner by 

1 I2/cL if I i : " t rue"  and u i = "false", 
J I?  cr i f l i = " f a l s e "  a n d u / = " t r u e " ,  

Yi = ]~iCw if l i = "false" and u i = "false", 
~12 cw i f l i = " t r u e "  a n d U i = " t r u e " .  

The preconditioners in Definition 4.5 are selected to result in a rapid contraction 
of the subregion to a critical point if the subregion is interior to the constraint set, 
and which result in a rapid contraction away from the boundary if the formally 
interior subregion is on the boundary of the constraint set. This should reduce 
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redundant calculations (on the boundary and in the interior), and aid in rapid 
rejection of regions not containing critical points. 

The list ~ of boxes and associated flags produced from ~ ,  IG~, and ~ is 
ordered such that the first element on the list is the one most likely to contain the 
global optimum. The "proper order" for this list is defined in [14, p. 49] so that a 
tuplet 

(X (1), ~(X(O), ~(XO)), L (1), U (t)) 

occurs before a tuplet 

(x L 

provided _~(X °))  ~ &(X(2)). 
As is done in [5] and [19], we use a point Newton method to attempt to find 

critical points to high accuracy, to get lower upper bounds on the minimal value 
of the objective function, in order to eliminate boxes from Z which cannot 
contain the global minimum. This technique, based on the fact that the classical 
Newton method (or "globalized" variants such as trust region algorithms), often 
converges to an approximation from starting points in regions too large for 
rigorous convergence verification. However, since we are solving a constrained 
problem, we must make sure that such approximate critical points do not lie 
outside the original region. We also wish to apply the technique to the reduced 
systems on the boundary. These considerations, combined with a desire to 
maintain simplicity, have resulted in 

A L G O R I T H M  4.6 (for Point Estimates). 
, . . . X T O. Input the present box X = (x 1 x2, , ~) , the corresponding boundary 

indicator variable S, a domain tolerance gpoint, a range tolerance epoint, and an 
iteration limit Mit. (Note: It is appropriate that 8poin t be small relative to the 
minimum box width in the overall branch and bound algorithm.) 

1. Form a point vector X ~ R n whose i-th component is (x_i + 27i)/2. 
2. Form the reduced point vector )(re ~ E R nred from those entries x i of  X for 

which s i = "false". 
3. Compute VR~b(X~o). 
4. For ~ to  Mit DO; 

(a) Compute HR(X~d). 
(b) Compute the Newton step V= (HR(Xr~d))-IvRqb(X~d). 

I f  this step fails (due to singularity of  HR), then return the midpoint 
vector of  X as X.  

(c) I f  II VII < ~point then proceed to'step 5. 
(d) t o r  ~ >t 2, if  II v II ~ greater than II v II from the previous iteration, then 

return the midpoint vector of X as X.  
(e) Apply the Newton step: Xre d "~--X~ d - V. 



AN INTERVAL BRANCH AND BOUND ALGORITHM 271 

. 

( f )  I f  any coordinate of  X~e d lies outside the corresponding coordinate 
bounds o f  X, then return the midpoint vector of  X as X.  

(g) Compute VR~b(Xred). 
(h) If II V~(g~od)II < %~.,  then proceed to step 5. 
END DO. 
(Return an approximate minimizer.) 
(a) Reset those components x i o f  X with s~ = "false" to the corresponding 

components o f  the computed X~¢ d . 
(b) Return X and ~. 

We may now present our main global optimization algorithm. 

ALGORITHM 4.7 (Branch and Bound). 
O. Input 

(a) the initial box X, 
(b) a minimum box width ex, and 
(c) a gradient tolerance %. 

1. (Initialization) 
(a) bu~--q~(X ). 
(b ) (Initialize boundary flags) 

(i) l i ~--"true", ] = 1 . . . .  , n. 
(ii) u i e--"true", ] = 1 , . . .  , n. 

(iii) s i ~---"false", ] = 1 . . . .  , n. 
(iv) Pi ~--"false", ] = 1 . . . .  , n. 

DO WHILE ( ~  f3 (x  I maxl_<~<_.w(x~) > ex} # 0). 
2. IF ~ ( X ) #  X, THEN 

(a) Insert X <z~, X <u> and X from ~ in the proper order in 5~ via Algorithm 4.8. 
(b) progress ~ " t r u e " .  
(c) Jump to step 4. 
END IF 

3. (Interval Newton method) 
(a) Compute VR¢(X ). 

ir  0~'vR¢(x) THEN 
(i) progress ~ "true". 

(ii) Proceed to step 4. 
END IF 

(b) Compute HR(X ). 
(c) Compute VRqb(X), where X is the midpoint vector o f  X. 
(d) X ~ % ( X ,  L, U, S). 

(Note: We do not apply this operation i f  the preconditioner as in 
Definition 4.5 cannot be found; thus, this operation will return at most 
one box.) 
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(e) IF 5~q~, in step 4(d) has changed X, THEN 
progress ~ "true" 

ELSE 
progress ~-- "false" 

END IF 
( f ) i f  X ¢ O then place X into its proper position in 5~ via Algorithm 4.8. 

4. Pop the first box X whose coordinate widths all exceed e x from 5~ and place it 
in X. 

Exit if there are no such boxes. 
5. (Possible bisection) IF progress = "false" THEN 

(a) (X ('), X (2~, i) <--- ~(X).  
(b) For i = 1, 2: I f  0 ~ Vn~b(X i) then place X i into its proper position in ~g. 
(c) progress ~-"true". 
(d) Return to step 4. 
ELSE 

(a) Pop the first box X whose coordinate widths all exceed G from ~ and 
place it in X. 

Exit if there are no such boxes. 
(b) Return to step 2. 
END IF 

END DO 

Besides inserting a box in the proper place in 5f, the following algorithm also 
updates the best computed upper bound b, for the global minimizer and removes 
boxes which cannot possibly contain a global minimizer from S~. 

ALGORITHM 4.8 (List Insertion). 
O. lnput the list £f, the best computed upper bound bu, the box X to be inserted, 

and the corresponding flag vectors L, U, S, and P as in Definitions 4.2 and 
4.3. 

1. (Update upper bound) 
(a) Apply Algorithm 4.6 to obtain an X ~ X. 
(b) b,  <---min{b~, ~b(X), ~(X)}. 

2. (Locate the point of  insertion, if insertion is appropriate) 
Assume the list is of  the form {X (k~ } q= 1, where ~b(X (k+ 1)) >~ ~b(X(k)), 1 ~< k ~< 
q -  1, and where we pretend that __$(X (q+l)) is infinite, and where X (°) is 
simply the beginning of  the list. 
For k = 0 to q WHILE (~b(X (k+l~) <~(X) )  DO: 

(Return if box cannot contain a global minimum) 
I f  ~(X (~)) < ~b(X) then return to Algorithm 4.7. 

END DO 
3. (Actual insertion process) 

(a) Insert X between X (k~ and X (~+1) (so that X becomes X (k+l), etc.) 
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(b) Insert ~(X),  q~(X), L, U, S, and P in corresponding lists. 
(c) Flag X (k+l) (i.e. X) according to whether its scaled coordinate widths are 

all less than e,. 
4. (Cull the list o f  boxes which cannot contain global minima) 

FOR j = k + 1 to q: / f ~ ( X  (j)) > ~(X) then delete X (j) from ~.  

In practice, 5¢ is a linked list, and the operations in Algorithm 4.8 proceed 
accordingly. 

5. Numerical Experiments 

We used Algorithm 4.7 in conjunction with the interval Gauss-Seidel procedure 
as implemented in [12] as a framework for implementation. The resulting Fortran 
77 program is available from the author for verification of these experiments, and 
eventually should be polished to production quality. 

We chose the following three types of test problems. 

(i) A very simple test problem to debug the code. 
(ii) Problems which have been used previously in testing global optimization 

methods. Here, we attempted to select difficult problems which were also 
fairly easy to program. 

(iii) A simply programmable problem which was previously used to test a 
bound-constrained global optimization algorithm, but which exhibits a 
difficult singularity. 

(iv) A problem which we designed to highlight the differences between the 
preconditioners we are testing. 

Where bound constraints were given previously in the literature, we used these 
bound constraints. 

When the method is generalized to handle more general constraints (see 
Section 7 below), we will experiment with additional problems from the excellent 
test set in [3]. 

The problems in our experiments are as follows. 

1. A simple quadratic, n = 2. 

4 , ( x )  = + - 

Initial box: [-0.1,  0.1] × [0.9, 1.1]. 
The gradient system is linear, so the Hessian matrix is a point matrix; the 
single optimum at X = (0, l)  r should thus be obtainable in one application of 
the preconditioned interval Gauss-Seidel algorithm. 

2. Problem 1 from [21] (three-hump camel back function), n = 2. 
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4 ~ ( X )  2 2 = x 1 ( 1 2 -  6 .3Xl)  + 6x2(x 2 - x a ) .  

Initial box: ( [ -4 ,  41, [ -4 ,  4]) / 
This problem has two global optima, at X =  ( -4 ,  2) r and X =  (4, 2) r, at 
which th (X)=-1444 .8 .  Note the contrast with the optimum X =  (0, 0) r, 
~b(X) = 0 reported in [21]; the latter represents a local optimum of the 
constrained problem. 

3. Problem 8 from [13], n = 3. (This is similar to problem 6 from [21], except for 
the factor of 10 in the first term.) 

n - - 1  

10 sinZ(Trxl) + ~ ( x  i - 1)211 + 10 sin2(Trxi+l)] + (x, - 1) 2 . 
i=1 

Initial box: ([-1.75,  3 . 2 5 ] , . . . ,  [-1.75, 3.25]) / 
This problem has a global minimum of ~b(X) = 0 at X = ( 1 , . . . ,  1) r, but a 
large number of local minima which grows exponentially with n. Levy 
originally proposed this problem to illustrate the effectiveness of his tunneling 
method at avoiding the numerous local minima, while Walster, Hansen, and 
Sengupta used it in [21] to show that interval methods were also effective at 
that. 

4. The preceeding problem with n = 4. 
5. The preceeding problem with n = 5. 
6. The preceeding problem with n = 6. 
7. The preceeding problem with n = 7. 
8. The preceeding problem with n = 8. 
9. A generalization of Powell's singular function, as given in [2], n = 4. 

¢ (X)  = ~ [(x~ + lOx~+l) 2 + 5(x~+ 2 - Xi+3) 2 + (Xi+ 1 - -  2Xi+2) 4 

+ 10(Xi - -  10Xi+3)4]  , 

where J = {1, 5, 9 , . . .  , n - 3}. 
Initial box: ( [ -1 ,  1 ] , . . . ,  [ - 1 ,  1]) r. 
The global optimum is ~b(X) = 0, attained at X = ( 0 , . . . ,  0) T; however, the 
Hessian matrix is of rank 2 at this point. Note that, for n = 4k, k > 1, the 
Hessian matrix has k identical diagonal blocks. Various algorithms may or 
may not take advantage of this, depending on their sophistication. 

10. The same as the preceeding problem, but with initial box equal to 
([0.1, 1.1] . . . .  , [0.1, 1.1]) r. 
This problem has a unique global optimum ~b(X) E [2.77, 2.84], attained at a 
unique point X = (Xl, x 2 ,  x 3 ,  x 4 )  T with x 1 E [0.564, 0.574] and x 2 = x 3 = x 4 = 
0.1. Note that this contrasts with the computed "constrained" optimum 
reported in [2], in which the same bound constraints were used. 

11. A function designed to highlight the difference between the inverse midpoint 
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and the linear programming preconditioners; the gradient is linear in all 
components except the last one, which is highly nonlinear. 

4~(X) = x i + xi + sin2(1000nx,). 
- =  _ 

Initial box: ( [ -1 ,  1 ] , . . . ,  [ - 1 ,  l l ) r ;  n = 4. 
The unique global minimum within the box is at X =  ( 0 , . . . , 0 )  r. The 
Hessian matrix for this function is constant except for the element in the n-th 
row and n-th column. This Hessian matrix is a symmetric analogue to the 
Hessian matrix for Brown's almost linear function (cf. the experiments in 
[10]); in the latter, the Jacobi matrix is constant except for the elements in the 
last row, each of which is highly nonlinear. 

In the experiments, e x was taken to be 10 -3 and ev was taken to be 0 in Algorithm 
4.7. In the point estimate algorithm, we took 6poin t = f f p o i n t  = 10-2° and Mit = 20. 

In addition to the preconditioner choice strategy embodied in Definition 4.5, 
we tried three other strategies, which we enumerate here. 

Strategy  1: Choose Yi as in Definition 4.5. 
Strategy  2: Choose Yi = IT"cw always. 
Strategy  3: Choose Yi to be the i-th row of the inverse of the midpoint matrix of 

the Hessian matrix. (This has been a common choice throughout the literature.) 
Strategy  4: Choose Yi the opposite of Definition 4.5: 

I I?cL if 1 i = "false" and u i = "true"  
j ~zcR if l i = " t rue"  and u~ = "false" 

Yi = ) _~cw if I, = "false" and u~ = "false" 
[ y/Cw if I i = " t rue"  and u i = " t ru e " .  

We implemented the algorithms in Fortran 77, borrowing from the algorithms 
and basic interval arithmetic package in [10] and [12] where possible; we tried all 
four strategies on all eleven problems on an IBM 3090. For each problem, we 
kept a record of 

CPU 
DM 
NFT 

N G C R  

N JR 
NGCN 

NPHI 

the central processing unit time in seconds to complete Algorithm 4.7; 
the maximum number of boxes in the list 2e; 
the number of interval Newton method calls (including steps 2 and 3 of 
Algorithm 4.7); 
the number of interval gradient component evaluations to determine the 
range of the gradient; 
the number of evaluations of a row of the interval Jacobi matrix; 
the number of interval gradient component evaluations for the interval 
Gauss-Seidel method; 
the number of interval objective function evaluations; 
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NBIS the number of bisections; and 
CPP the total CPU time in the point Newton method. 

The indicator CPP is meant to measure whether a more sophisticated strategy 
than applying the point Newton method to every box and sub-box produced 
would benefit the algorithm. Also, for ease of coding, the gradient and Hessian 
matrix in the point Newton method were obtained from the interval gradient and 
interval Hessian routines, and thus were fairly expensive. However, in no case did 
the ratio CPP/CPU exceed about 1/3. 

The CPU time should be taken here as a relative measure only, as we were 
using portable, software-implemented interval arithmetic which did not utilize 
modern techniques such as in-lining. Performance with machine-optimized inter- 
val arithmetic could be an order of magnitude faster. 

The results for all eleven problems and Strategy 1 are given in Table I, while 
summary statistics (representing the sum of the above measures over all eleven 
problems) are given for all four strategies in Table II. Complete statistics for 
problems 9, 10, and 11 are given in Table III. 

In all cases, Algorithm 4.7 completed successfully. 

Table I. Strategy 1 

# CPU DM NFT NGCR N JR NGCN NPHI NBIS CPP 

I 0.0 1 3 8 2 6 7 0 0.0 
2 0.0 4 10 38 10 22 22 3 0.0 
3 10.9 9 61 507 174 447 108 32 4.1 
4 21.6 14 82 908 312 924 146 44 7.8 
5 33.8 15 90 1283 425 1570 171 56 11.9 
6 53.0 20 109 1877 618 2574 208 69 17.7 
7 80.2 21 138 2697 917 4165 254 81 25.1 
8 104.9 33 143 3325 1080 5584 277 94 32.0 
9 35.6 39 2321 21458 9234 27164 3025 497 4.1 

10 0.8 5 62 418 146 521 100 27 0.2 
11 34.3 16 432 5954 1712 2252 1086 419 9.5 

Tot. 375.1 177 3451 38473 14630 45229 5404 1322 112.4 

Table II. Summary fer all four strategies 

# CPU DM NFT NGCR NJR NGCN NPHI NBIS CPP 

1 375.1 177 3451 38473 14630 45229 5404 1322 112.4 
2 374.0 177 2675 40290 15526 47850 5638 1326 111.9 
3 291.6 213 2245 32007 9392 43784 5069 1954 100.9 
4 378.8 177 3735 40771 15766 48506 5699 1327 112.6 
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Table III. Strategy compadson on significant problems 

# CPU DM NFT NGCR NJR NGCN NPHI NBIS CPP Str. 

9 35.6 39 2321 21458 9234 27164 3025 497 4.1 1 
38.1 39 2545 23278 10130 29788 3259 501 4.4 2 
17.5 73 1175 15123 4502 22012 2457 1017 3.3 3 
40.1 39 2621 23895 10434 30700 3337 503 4.5 4 

10 

11 

0.8 5 62 418 146 521 100 27 0.2 1 
0.8 5 62 415 146 518 100 27 0.2 2 
0.6 5 52 382 103 397 100 36 0.2 3 
0.5 5 46 279 82 262 83 26 0.2 4 

34.3 16 432 5954 1712 2252 1086 419 9.5 1 
33.7 16 432 5954 1712 2252 1086 419 9.4 2 
35.3 18 531 7636 2100 10500 1471 525 10.5 3 
34.4 16 432 5954 1712 2252 1086 419 9.5 4 

The  above results lead to the following conclusions. 

The choice of preconditioner is not as important in global optimization 
problems as in general nonlinear systems. 

Overal l ,  the experiments  seem to refute our thesis that  an appropr ia te  pre- 
condit ioner  will improve  the performance  of a global optimization algorithm. This 
is in sharp contrast  to experiments  repor ted in [10] and [11], in which optimal  
precondit ioners  never  appreciably reduced performance  ( f rom the point of view 
of C P U  time and other  measures) ,  and in many cases increased per formance  by 
orders  of  magnitude.  This is probably  partially due to the symmetry  in the interval 

Hess ian  matrix. Our  opt imal  preconditioners will avoid working with a row in 
which there is a large amount  of  overest imation in the intervals (due to, e.g.,  a 
highly nonlinear function component) .  However ,  such overest imation in a row of 
an interval Hessian matrix must also occur in the corresponding column; thus, the 

overes t imat ion will be present  in the sum (4) in Algori thm 2.1 regardless of 
whether  or  not that row is included in the linear combinat ion forming G~. We do 
note,  however ,  that,  in the problem we designed to highlight our precondit ioners,  
our  precondit ioners  resulted in significantly less interval Hessian row evaluations 
than the inverse midpoint  preconditioner.  

A second explanation for the lack of performance  improvement  is that  the 
interval Newton  method  itself is less important  in global optimization algorithms 

than in general nonlinear system solvers. In particular, use of  the upper  bound b u 
on the global op t imum to eliminate boxes seems to be powerful,  and it is 
enhanced in our  context  by our lower-dimensional searches (with correspondingly 
smaller  overest imations in the interval arithmetic) on boundaries.  The relative 
un impor tance  of the interval Newton method  is suggested by the fact that  the 
total  numbe r  of bisections and the maximum list size was larger when the inverse 
midpoint  precondi t ioner  was used. This seems to indicate that,  in that  case, the 
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boxes needed to be smaller in order for the interval Gauss-Seidel method to 
further reduce the coordinate intervals. (Also, see the italicized comment below.) 

Use of the point Newton method (Algorithm 4.6) to improve b u is 
very worthwhile. 

With a very inefficient implementation of the point Newton method, and applying 
the point Newton method at every conceivable point where it could benefit, it 
took no more than about 1/3 of the total CPU time. Furthermore, in preliminary 
experiments in which we did not use the point Newton method (not reported 
here), the algorithm could not complete Problem 9 without storing at least 4000 
boxes in Gf; when using the inverse midpoint preconditioner, the algorithm also 
failed on Problem 11 for the same reason. (It is interesting to note, however, that 
even without the point Newton method, Strategy 1 completed successfully in about 
25 CPU seconds, whereas use of  the inverse midpoint preconditioner failed in 
about 708 CPU seconds.) 

Finally even when the algorithm without the point Newton method completed, 
the final boxes in ~ were of lower quality in the sense that there were clusters of 
numerous boxes about global minima, some of which were fairly far from the 
actual global minimum. Finally, CPU times were much larger. 

Use of reduced gradients is worthwhile. 

We do not have solid statistics on this aspect. However, the bound constraints fit 
very naturally (without appreciable extra overhead and without complicating the 
code) into both the interval Newton method and the point Newton method for 
obtaining point estimates. Furthermore, as mentioned, zero-width coordinates 
lead to less overestimation in the interval values. Thus, the presence of bound 
constraints makes the problem easier than the global unconstrained problem. 

7. Future Improvements  

It is also be possible to apply this method to several classes of more general 
constraints than those in (1). For example, differentiable nonlinear constraint 
functions can be handled in two ways as follows. Suppose we have an inequality 
constraint of the form 

h(X) <- O. 

Then we may compute interval extensions h(X) of h over boxes X between steps 2 
and 3 of the list insertion algorithm (Algorithm 4.8), and return without inserting 
a box X if h(X) > 0. 

We may also include a linear interval equation of the form 

Vh(X)(X - X)  = h(X) f9 (-oo, 0] 
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in the reduced gradient system, as suggested by Novoa ([16]). This transforms the 
linear interval system into a system with more equations than unknowns, but our 
linear programming preconditioner technique applies equally well to rectangular 
systems. In particular, the LP problem (5) may be modified by increasing the 
index bound on I, and another simple modification allows inclusion of interval 
right-hand-sides. Any feasible critical points must then necessarily be contained in 
the box obtained from the resulting preconditioned Gauss-Seidel sweep. 

Finally, standard techniques such as use of Lagrange multipliers or the Kuhn- 
Tucker conditions may be used. 

Notes 

1 By optimality, we mean that the width of a single coordinate in the Gauss-Seidel sweep is 
minimized over all possible preconditioner rows, given the initial guess point and the interval Jacobi 
matrix (or slope matrix). 

2 See [14, ch. 3 and ch. 4] [15], or [20 §2.6-§2.7]. 

References 

1. Alefeld, G6tz and Jiirgen Herzberger (1983), Introduction to Interval Computations, Academic 
Press, New York. 

2. Conn, Andrew R., Nicholas I. M. Gould and Philippe L. Toint (1988), Testing a Class of 
Methods for Solving Minimization Problems with Simple Bounds on the Variables, Math. Comp. 
50 (182), 399-430. 

3. Floudas, C. A. and P. M. Pardalos (1990), A Collection of Test Problems for Constrained Global 
Optimization Algorithms, Springer-Verlag, New York. 

4. Hansen, E. (1980), Global Optimization Using Interval Analysis- the Multi-Dimensional Case, 
Numer. Math. 34 (3), 247-270. 

5. Hansen, E. (1988), An Overview of Global Optimization Using Interval Analysis, in Reliability in 
Computing, Academic Press, New York, pp. 289-308. 

6. Hu, C.-Y. (1990), Preconditioners for Interval Newton Methods, Ph.D. dissertation, University of 
Southwestern Louisiana. 

7. Keaffott, R. B. (1987), Abstract Generalized Bisection and a Cost Bound, Math. Comp. 49 (179), 
187-202. 

8. Kearfott, R. B. (1990), Interval Newton/Generalized Bisection When There are Singularities 
near Roots, Annals of Operations Research 25, 181-196. 

9. Kearfott, R. B. (1990), Interval Arithmetic Techniques in the Computational Solution of 
Nonlinear Systems of Equations: Introduction, Examples, and Comparisons, in Computational 
Solution of Nonlinear Systems of Equations (Lectures in Applied Mathematics, volume 26), 
American Mathematical Society, Providence, RI, pp. 337-358. 

10. Kearfott, R. B. (1990), Preconditioners for the Interval Gauss-Seidel Method, SlAM J. Numer. 
Anal. 27 (3), 804-822. 

11. Kearfott, R. B., C. Y. Hu and M. Novoa III (1991), A Review of Preconditioners for the Interval 
Gauss-Seidel Method, Interval Computations 1 (1), 59-85. 

12. Kearfott, R.B. and M. Novoa (1990), INTBIS, A Portable Interval Newton/Bisection Package, 
ACM. Trans. Math. Software 16 (2), 152-157. 

13. Levy, A. V. and S. Gomez (1984), The Tunneling Method Applied to Global Optimization, in 
Numerical Optimization 1984, SIAM, Philadelphia, pp. 213-44. 

14. Moore, Ramon E. (1979), Methods and Applications of Interval Analysis, SIAM, Philadelphia. 



280 R. B A K E R  K E A R F O T T  

15. Neumaier, A. (1990), Interval Methods for Systems of Equations, Cambridge University Press, 
Cambridge, England. 

16. Novoa, M., Linear Programming Preconditioners for the Interval Gauss-Seidel Method and their 
Implementation in Generalized Bisection, Ph.D. dissertation, University of Southwestern 
Louisiana, to appear. 

17. Pardalos, P. M. and J. B. Rosen (1987), Constrained Global Optimization: Algorithms and 
Applications, Springer-Verlag, New York. 

18. Ratschek, H. (1985), Inclusion Functions and Global Optimization, Math. Programming 33 (3), 
300-317. 

19. Ratschek, H. and J. G. Rokne (1987), Efficiency of a Global Optimization Algorithm, SlAM J. 
Numer. Anal. 24 (5), 1191-1201. 

20. Ratschek, H. and J. Rokne (1988), New Computer Methods for Global Optimization, Wiley, New 
York. 

21. Walster, G. W., E. R. Hansen and S. Sengupta (1985), Test Results for a Global Optimization 
Algorithm, in Numerical Optimization 1984, SIAM, pp. 272-287. 


